55,853 research outputs found

    Dispersion of biased swimming microorganisms in a fluid flowing through a tube

    Full text link
    Classical Taylor-Aris dispersion theory is extended to describe the transport of suspensions of self-propelled dipolar cells in a tubular flow. General expressions for the mean drift and effective diffusivity are determined exactly in terms of axial moments, and compared with an approximation a la Taylor. As in the Taylor-Aris case, the skewness of a finite distribution of biased swimming cells vanishes at long times. The general expressions can be applied to particular models of swimming microorganisms, and thus be used to predict swimming drift and diffusion in tubular bioreactors, and to elucidate competing unbounded swimming drift and diffusion descriptions. Here, specific examples are presented for gyrotactic swimming algae.Comment: 20 pages, 4 figures. Published version available at http://rspa.royalsocietypublishing.org/content/early/2010/02/09/rspa.2009.0606.short?rss=

    Self-similar solutions for the interaction of relativistic ejecta with an ambient medium

    Full text link
    We find self-similar solutions to describe the interaction of spherically symmetric ejecta expanding at relativistic speeds with an ambient medium having a power law density distribution. Using this solution, the time evolution of the Lorentz factor of the outer shock is derived as a function of the explosion energy, the mass of the ejecta, and parameters for the ambient medium. These solutions are an ultra-relativistic version of the solutions for the circumstellar interaction of supernova ejecta obtained by Chevalier and extensions of the relativistic blast wave solutions of Blandford & Mckee.Comment: 12 pages, 1 figure, accepted for publication in Ap

    Fossil Imprints of the First Generation Supernova Ejecta in Extremely Metal-Deficient Stars

    Full text link
    Using results of nucleosynthesis calculations for theoretical core-collapse supernova models with various progenitor's masses, it is shown that abundance patterns of C, Mg, Si, Ca, and H seen in extremely metal-deficient stars with [Fe/H] < -2.5 follow those seen in the individual first generation supernova remnants (SNRs). This suggests that most of the stars with [Fe/H] < -2.5 were made from individual supernova (SN) events. To obtain the ratio of heavy elements to hydrogen, a formula is derived to estimate the mass of hydrogen swept up by a SNR when it occurs in the interstellar matter with the primordial abundances. We use [Mg/H] to indicate the metallicities instead of [Fe/H]. The metallicities [Mg/H] predicted from these SNRs range from ~-4 to ~-1.5 and the mass of Mg in a SN is well correlated with its progenitor's mass. Thus the observed [Mg/H] in an extremely metal deficient star has a correspondence to the progenitor's mass. A larger [Mg/H] corresponds to a larger progenitor's mass. Therefore, so called `age-metallicity relation' does not hold for stars with [Fe/H] < -2.5. In contrast, the [Mg/Fe] ratios in the theoretical SNRs have a different trend from those in extremely metal-deficient stars. It is also shown that the observed trend of [Mg/Fe] can predict the Fe yield of each SN given the correspondence of [Mg/H] to the progenitor's mass. The Fe yields thus obtained are consistent with those derived from SN light curve analyses. This indicates that there is still a problem in modelling a core-collapse supernova at its beginning of explosion or mass cut.Comment: 6 pages, 4 figures, 1 table; Accepted for publication in the Astrophysical Journal Letter

    Stability of an Ultra-Relativistic Blast Wave in an External Medium with a Steep Power-Law Density Profile

    Get PDF
    We examine the stability of self-similar solutions for an accelerating relativistic blast wave which is generated by a point explosion in an external medium with a steep radial density profile of a power-law index > 4.134. These accelerating solutions apply, for example, to the breakout of a gamma-ray burst outflow from the boundary of a massive star, as assumed in the popular collapsar model. We show that short wavelength perturbations may grow but only by a modest factor <~ 10.Comment: 12 pages, 3 figures, submitted to Physical Review

    Viscous Withdrawal of Miscible Liquid Layers

    Full text link
    In viscous withdrawal, a converging flow imposed in an upper layer of viscous liquid entrains liquid from a lower, stably stratified layer. Using the idea that a thin tendril is entrained by a local straining flow, we propose a scaling law for the volume flux of liquid entrained from miscible liquid layers. A long-wavelength model including only local information about the withdrawal flow is degenerate, with multiple tendril solutions for one withdrawal condition. Including information about the global geometry of the withdrawal flow removes the degeneracy while introducing only a logarithmic dependence on the global flow parameters into the scaling law.Comment: 4 pages, 4 figure

    Credit Availability for Potential Irrigators in North Dakota

    Get PDF
    Agricultural Finance, Resource /Energy Economics and Policy,

    Gravitational oscillations of a liquid column

    Get PDF
    We report gravity oscillations of a liquid column partially immersed in a bath of liquid. We stress in particular some peculiarities of this system, namely (i) the fact that the mass of this oscillator constantly changes with time; (ii) the singular character of the beginning of the rise, for which the mass of the oscillator is zero; (iii) the sources of dissipation in this system, which is found to be dominated at low viscosity by the entrance (or exit) effects, leading to a long-range damping of the oscillations. We conclude with some qualitative description of a second-order phenomenon, namely the eruption of a jet at the beginning of the rise.Comment: 22 pages, pdf. Submitted to Physics of Fluid

    Two-dimensional solitons on the surface of magnetic fluids

    Get PDF
    We report an observation of a stable soliton-like structure on the surface of a ferrofluid, generated by a local perturbation in the hysteretic regime of the Rosensweig instability. Unlike other pattern-forming systems with localized 2D structures, magnetic fluids are characterized by energy conservation; hence their mechanism of soliton stabilization is different from the previously discussed gain/loss balance mechanism. The radioscopic measurements of the soliton's surface profile suggest that locking on the underlying periodic structure is instrumental in its stabilization.Comment: accepted for publication by Physical Review Letter
    • …
    corecore